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Three-loop corrections to the lightest Higgs scalar boson mass in supersymmetry

Stephen P. Martin
Physics Department, Northern Illinois University, DeKalb IL 60115 USA

and Fermi National Accelerator Laboratory, PO Box 500, Batavia IL 60510

I evaluate the largest three-loop corrections to the mass of the lightest Higgs scalar boson in the
Minimal Supersymmetric Standard Model in a mass-independent renormalization scheme, using ef-
fective field theory and renormalization group methods. The contributions found here are those that
depend only on strong and Yukawa interactions and on the leading and next-to-leading logarithms
of the ratio of a typical superpartner mass scale to the top quark mass. The approximation assumes
that all superpartners and the other Higgs bosons can be treated as much heavier than the top
quark, but does not assume their degeneracy. I also discuss the consistent addition of the three-loop
corrections to a complete two-loop calculation.
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I. INTRODUCTION

Low-energy supersymmetry breaking can stabilize the
electroweak scale against radiative corrections propor-
tional to much higher mass scales, including the Planck
mass. In the minimal supersymmetric standard model
(MSSM), the lightest neutral Higgs scalar boson (h) mass
is quartically sensitive to the value of the top quark mass,
but only logarithmically sensitive to the scale of super-
symmetry breaking, once the Z boson mass is taken as
fixed. A future experimental determination of the masses
and couplings of the Higgs scalar bosons and the super-
partners at the Fermilab Tevatron pp collider, the CERN
Large Hadron Collider and/or a future linear e+e− col-
lider will be crucial in understanding the structure of
supersymmetry breaking.

The h mass, in particular, is likely to be a very pre-
cisely measured quantity [1–4]. This has motivated many
studies of the relationship between the physical Higgs
mass Mh and the underlying Lagrangian parameters, in
the form of radiative corrections of increasing precision
and detail [5]-[53]. The tremendous effort that has been
expended on these calculations is necessitated by the ap-
pearance of qualitatively new enhancement effects at each
of the first two loop orders in perturbation theory. The
tree-level result depends only on electroweak gauge cou-
plings, which enter into the quartic Higgs coupling. At

one-loop order, the large top Yukawa coupling, enhanced
by a color factor, enters. At two-loop order, the QCD
coupling makes its appearance. It turns out that even
three-loop order contributions will be necessary if the
goal is to make purely theoretical errors negligible com-
pared to the future experimental uncertainty in Mh. (Of
course, there will also be important sources of error due
to a lack of precise knowledge of the input parameters
of the theory, such as the top-quark Yukawa couplings
and the soft supersymmetry breaking terms in the La-
grangian; these are considered as experimental errors for
the present discussion.)

Three general methods have been commonly used, of-
ten in combination, for evaluating Mh. First, the pole
mass can be computed by a straightforward calculation
of the neutral Higgs self-energy diagrams. The resulting
complete expressions are quite complicated and unwieldy
beyond one-loop order. A second approach uses the effec-
tive potential approximation. This means that radiative
corrections to M2

h are computed by taking the second
derivatives of the effective potential; this is equivalent to
computing the pole mass from self-energy functions in the
approximation that the external momentum is neglected.
This has the advantage that calculations can be reduced
to vacuum graphs, which can always be analytically com-
puted through 2-loop order. However, this method is not
gauge-fixing invariant, has limited accuracy, and can suf-
fer from numerical instabilities if one chooses a renormal-
ization scale at which a tree-level squared mass happens
to be extremely small. A third method uses the method
of effective Lagrangians, with renormalization group run-
ning used to systematically isolate the effects that are en-
hanced by logarithms of ratios of the superpartner mass
scale to the electroweak and top-quark mass scales. Re-
cent reviews and descriptions of computer programs im-
plementing some of the known results can be found in
[29, 46, 49, 50, 53].

In this paper, I will use a combination of the three
methods mentioned above to evaluate the most impor-
tant 3-loop contributions to Mh. The input parameters

in this result will be the running DR
′

[54, 55] parame-
ters in the full theory with no superpartners decoupled.
(These results can also be converted into on-shell or hy-
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brid schemes in which all or some of the input particle
masses are taken to be physical masses rather than run-
ning masses, although that is not done explicitly here.)
The results can be used to supplement my previous eval-
uation of Mh at two-loop order, which includes the full
diagrammatic results that involve the strong interactions
and the Yukawa interactions (including the ones that also
involve the electroweak couplings) [48], together with all
other two-loop contributions in the effective potential ap-
proximation [41, 42].

The 3-loop contributions to be found here are only the
ones that are proportional to powers of the strong cou-
pling and the top-quark Yukawa coupling. Also, only the
contributions containing the leading and next-to-leading
powers of ln(Q2

SUSY/m2
t ) at 3-loop order are evaluated,

where mt is the top-quark mass and QSUSY is a renormal-
ization scale comparable to a typical superpartner mass
scale. However, I will not assume that the superpartners
are degenerate or that top-squark mixing is negligible.
These logarithmically enhanced contributions are likely
to dominate, numerically. While there is no unsurmount-
able obstacle to evaluating the analogous contributions at
arbitrary loop order using the same methods, as a practi-
cal matter they are unlikely to be as large as the remain-

ing uncalculated 3-loop corrections, nor are they likely
to be as large as the practical experimental errors once
input parameter uncertainties are taken into account.

II. CONVENTIONS AND SETUP

In the following,

κ ≡ 1/16π2 (2.1)

is used as a loop factor, and the renormalization scale is
denoted Q. Also, I define the symbol

ln(x) = ln(x/Q2). (2.2)

Some formulas below will make use of the one-loop vac-
uum integral function

A(x) = xln(x) − x, (2.3)

and the Passarino-Veltman one-loop self-energy scalar
loop integral with external momentum invariant s and
equal internal squared masses x,

fB(s, x, q2) =

{
2 − ln(x/q2) − 2(4x/s− 1)1/2 sin−1(

√
s/4x) (s ≤ 4x)

2 − ln(x/q2) + (1 − 4x/s)1/2
{
ln(s[1 − (1 − 4x/s)1/2]/2x − 1) + iπ

}
(s > 4x).

(2.4)

(This function will appear in some formulas below with
q not equal to the renormalization scale Q.) This has the
small s expansion, valid for s < 4x:

fB(s, x, q2) = − ln(x/q2) + s/(6x) + s2/(60x2)

+s3/(420x3) + . . . , (2.5)

and the special value:

fB(x, x, q2) = 2 − π/
√

3 − ln(x/q2). (2.6)

The neutral Higgs complex scalar field φ of the Stan-
dard Model effective theory has a tree-level potential

V = −m̂2
φ|φ|2 +

λ̂

4
|φ|4. (2.7)

where m̂φ and λ̂ are running MS parameters. The top
quark and gauge interactions of the effective Standard
Model theory are governed by MS running parameters:

ŷt, ĝ3, ĝ, ĝ′, v̂, (2.8)

with other Yukawa couplings neglected. The minimum

of the tree-level potential occurs at 〈φ〉 = 2m̂2/λ̂. How-
ever, here I expand instead around the vacuum expecta-
tion value (VEV) v̂ defined as the minimum of the loop-
corrected Landau gauge effective potential of the theory.

Explicitly,

λ̂v̂2 = 2m̂2
φ − 2

v̂

∂

∂φ
∆Veff(φ, φ∗)

∣∣∣
φ=φ∗=bv

. (2.9)

For example, working at one-loop order,

λ̂v̂2 = 2m̂2
φ + κ

{
12ŷ2

t A(m̂2
t ) −

3λ̂

2
A(m̂2

h)

−1

2
(ĝ2 + ĝ′2)[3A(m̂2

Z) + 2m̂2
Z ]

−ĝ2[3A(m̂2
W ) + 2m̂2

W ]
}

+ O(κ2), (2.10)

where

m̂2
h = λ̂v̂2, (2.11)

m̂t = ŷtv̂ (2.12)

m̂2
W = ĝ2v̂2/2 (2.13)

m̂2
Z = (ĝ2 + ĝ′2)v̂2/2. (2.14)

Equation (2.9) is used to eliminate m̂2
φ in favor of v̂. The

normalization of the Higgs VEV is such that v̂ is roughly
175 GeV.

The MSSM theory is governed by (unhatted) running

DR
′
parameters including the gauge couplings, top-quark
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Yukawa coupling, and Higgs expectation values (defined
as the minimum of the loop-corrected Landau gauge ef-
fective potential of the full MSSM theory):

g3, g, g′, yt, vu, vd, (2.15)

The last three of these are taken to be real and positive
by convention. The parameters

mt ≡ ytvu (2.16)

v ≡ (v2
u + v2

d)1/2 (2.17)

tan(β) ≡ vu/vd (2.18)

are defined in terms of them, and so depend on the renor-
malization scale Q. In the following, I will also use the
short-hand notations

sβ = sin(β), cβ = cos(β), c2β = cos(2β). (2.19)

The top-squark sector has a tree-level running squared-
mass matrix in the (t̃L, t̃R) basis:

(
m2

t̃L
+ m2

t vua∗
t − vdµyt

vuat − vdµ
∗yt m2

t̃R
+ m2

t

)
(2.20)

where electroweak D-terms are neglected (appropriately
for the approximation used below), and the notation fol-
lows [41, 56]. The mass eigenstates are related to the
gauge eigenstates by

(
t̃L
t̃R

)
=

(
ct̃ −s∗

t̃
st̃ c∗

t̃

) (
t̃1
t̃2

)
, (2.21)

with |ct̃|2 + |st̃|2 = 1. (Here I use the conventions of
ref. [41]; those of ref. [56] are related by st̃ → −st̃.) If µ
and at are real, then st̃ and ct̃ are the sine and cosine of a
top-squark mixing angle; otherwise they can be complex
(but ct̃ can always be taken real as a convention). It is
convenient to define the parameter Xt by:

mtXt = vuat − vdµ
∗yt = −st̃c

∗

t̃ (m
2
t̃2
− m2

t̃1
), (2.22)

in terms of which the squared-mass eigenvalues are:

m2
t̃1

, m2
t̃2

=
1

2

[
m2

t̃R
+ m2

t̃L
+ 2m2

t

∓{(m2
t̃R

− m2
t̃L

)2 + 4m2
t |Xt|2}1/2

]
. (2.23)

Also appearing below are the tree-level running squared-
mass eigenvalues of the gluino and squarks, denoted

m2
g̃, m2

q̃i
(i = 1, . . . , 12). (2.24)

The latter include the squared mass eigenvalues of t̃1 and
t̃2, as well as the other squarks which are taken to be
unmixed. The neutralino and chargino mass eigenstates
will also be taken to be unmixed, with the Higgsinos
having a common squared mass |µ|2. The electroweak
gauginos do not contribute in the approximation used
here. Likewise, the Higgs scalar bosons H0, A0, H± are
treated in the decoupling limit, with a common running
squared mass m2

H (supposed to be much larger than m2
h

and m2
t ), and mixing angle α = β − π/2.

III. HIGGS POLE MASS IN THE STANDARD

MODEL

To prepare for matching the Standard Model to the
MSSM, one can use the renormalization group to ob-
tain the higher-loop contributions of leading and next-
to-leading order in

L̂ ≡ ln(Q2/m̂2
t ) (3.1)

for large Q. This is done by using the fact that M2
h is an

observable and therefore renormalization-scale indepen-
dent. Let us write:

M2
h =

∞∑

n=0

κn
n∑

p=0

L̂pCn,p (3.2)

where the quantities Cn,p only depend on Q implicitly
through the running parameters. For p 6= 0, the coeffi-
cient Cn,p can be obtained from the results with smaller
n, provided that the n − p + 1 loop order beta functions
for each of the running parameters X are known. The
3-loop order beta functions for the scalar sector of the
Standard Model are evidently not available at present,
so only the leading and next-to-leading contributions in

L̂ can be found at each loop order in this way. In general,
they satisfy recursion relations:

Cn,n = − 1

2n

∑

X

β
(1)
X

∂

∂X
Cn−1,n−1, (3.3)

Cn,n−1 =
[
β

(1)
bv /v̂ + β

(1)
byt

/ŷt

]
Cn−1,n−1 −

1

2(n − 1)

∑

X

[
β

(1)
X

∂

∂X
Cn−1,n−2 + β

(2)
X

∂

∂X
Cn−2,n−2

]
, (3.4)

where

βX ≡ Q
dX

dQ
= κβ

(1)
X + κ2β

(2)
X + . . . (3.5)

for X = ŷt, ĝ3, v̂, λ̂, ĝ, ĝ′. In the following, dependence on
ĝ, ĝ′ will be dropped, so the pertinent 2-loop renormaliza-
tion group equations for the Standard Model parameters
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are [57, 58]:

β
(1)
bλ

= −24ŷ4
t + 12λ̂ŷ2

t + 6λ̂2, (3.6)

β
(2)
bλ

= −128ĝ2
3ŷ

4
t + 120ŷ6

t + 80ĝ2
3ŷ

2
t λ̂

−3ŷ4
t λ̂ − 36ŷ2

t λ̂
2 − 39λ̂3/2, (3.7)

β
(1)
byt

= 9ŷ3
t /2 − 8ĝ2

3ŷt, (3.8)

β
(2)
byt

= −108ĝ4
3ŷt + 36ĝ2

3ŷ
3
t − 12ŷ5

t

−3ŷ3
t λ̂ + 3ŷtλ̂

2/8, (3.9)

β
(1)
bv = −3ŷ2

t v̂, (3.10)

β
(2)
bv =

(
−20ĝ2

3ŷ
2
t + 27ŷ4

t /4 − 3λ̂2/8
)
v̂, (3.11)

β
(1)
bg3

= −7ĝ3
3, (3.12)

β
(2)
bg3

= −26ĝ5
3 − 2ĝ3

3ŷ
2
t . (3.13)

In the Standard Model, a routine calculation shows
that the one-loop pole squared mass of the Higgs boson
in the MS scheme can be written as:

M2
h = λ̂v̂2 + κ

{
3ŷ2

t (4m̂2
t − m̂2

h)fB(m̂2
h, m̂2

t , Q
2) − 9

4
λ̂m̂2

hfB(m̂2
h, m̂2

h, Q2)

+
1

2
[λ̂(4m̂2

W − m̂2
h) − 6ĝ2m̂2

W ]fB(m̂2
h, m̂2

W , Q2) +
1

4
[λ̂(4m̂2

Z − m̂2
h) − 6(ĝ2 + ĝ′2)m̂2

Z ]fB(m̂2
h, m̂2

Z , Q2)

−λ̂[A(m̂2
W ) + A(m̂2

Z)/2] + 2ĝ2m̂2
W + (ĝ2 + ĝ′2)m̂2

Z

}
. (3.14)

Then, writing Cn,p = cn,pv̂
2, one can choose:

c0,0 = λ̂, (3.15)

c1,0 = 2λ̂ŷ2
t − λ̂2(9b̂h + 2b̂W + b̂Z + 6/5)/4

+O(λ̂3), (3.16)

from which it follows, via eqs. (3.3)-(3.13), that:

c1,1 = 12ŷ4
t − 3ŷ2

t λ̂ − 3λ̂2, (3.17)

c2,2 = 96ĝ2
3ŷ

4
t − 54ŷ6

t − λ̂(12ĝ2
3 ŷ

2
t + 99ŷ4

t /4)

+18λ̂2ŷ2
t + 9λ̂3, (3.18)

c2,1 = −32ĝ2
3ŷ

4
t − 18ŷ6

t + λ̂
(
20ĝ2

3ŷ
2
t + ŷ4

t [81/20

−54b̂h − 12b̂W − 6b̂Z]
)

+ O(λ̂2), (3.19)

c3,3 = 736ĝ4
3ŷ

4
t − 672ĝ2

3ŷ
6
t + 90ŷ8

t + λ̂(−60ĝ4
3ŷ

2
t

−102ĝ2
3ŷ

4
t + 243ŷ6

t ) + O(λ̂2), (3.20)

c3,2 = 160ĝ4
3ŷ

4
t + 168ĝ2

3ŷ
6
t + [−324b̂h − 72b̂W

−36b̂Z + 6633/10]ŷ8
t + O(λ̂), (3.21)

c4,4 = 5520ĝ6
3ŷ

4
t − 6492ĝ4

3ŷ
6
t + 2178ĝ2

3ŷ
8
t

+783ŷ10
t /2 + O(λ̂). (3.22)

Here, dependences on ĝ, ĝ′ have been dropped except
where they enter through the kinematic quantities

b̂h = fB(m̂2
h, m̂2

h, m̂2
t ), (3.23)

b̂W = fB(m̂2
h, m̂2

W , m̂2
t ), (3.24)

b̂Z = fB(m̂2
h, m̂2

Z , m̂2
t ), (3.25)

and fB(m̂2
h, m̂2

t , m̂
2
t ) has been expanded using eq. (2.5).

Note that terms up to order λ̂N−n+k in the coefficients

cn,n and cn,n−1 are needed to generate the terms of order

λ̂k in the coefficients cN,N and cN,N−1 for N > n. How-

ever, only terms of order λ̂ in Cn,n and independent of λ̂

in Cn,n−1 will be needed in the next section, because λ̂ is
proportional to electroweak couplings at tree level in the
MSSM. The running parameters in eqs. (3.15)-(3.25) are
all evaluated at the same arbitrary renormalization scale
Q appearing in L.

It should be emphasized that the expansion given
above for M2

h is far from unique. In particular, the seed
expression for c1,0 could have been chosen differently, cor-
responding e.g. to trading running masses for physical
masses in the one-loop correction part of eq. (3.14). This
would produce a different set of higher coefficients, but
the expression for the total physical mass M2

h would dif-
fer only by an amount consistently neglected within the
approximations. Here, I have chosen to do the expansion
entirely in terms of running parameters.

IV. MATCHING TO THE MSSM

The result for the Higgs pole squared mass M2
h in the

previous section can now be used to obtain an approxi-

mate formula in terms of the running DR
′
parameters of

the MSSM. To do this, one needs the one-loop matching
conditions, which can be written in the form:

λ̂ =
1

2
(g2 + g′2)c2

2β + κy4
t s

4
βcλ + . . . , (4.1)

v̂ = (vu/sβ)
[
1 + κy2

t s2
βcv + . . .

]
, (4.2)

ŷt = ytsβ

[
1 + κ

(
g2
3cyt

+ y2
t s2

βc′yt

)
+ . . .

]
, (4.3)

ĝ3 = g3

[
1 + κg2

3cg3
+ . . .

]
. (4.4)
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The matching coefficients cλ, cv, cyt
, c′yt

, and cg3
depend

on the renormalization scale Q, which is arbitrary but is
taken to be comparable to the superpartner and heavy
Higgs bosons (A0, H0, H±) masses. All of these scales
are assumed to be much larger than the top and lightest
Higgs (h) and electroweak gauge boson masses, so that
effects suppressed by powers of mt̃1,2

, mg̃, mH , |µ|, etc.,
are neglected. Then one can work consistently to next-
to-leading order in

L = ln(Q2/m2
t ), (4.5)

that is, keeping Ln and Ln−1 in the terms of n loop order.
Eliminating the Standard Model parameters in favor of
MSSM parameters, one obtains:

M2
h = m2

h + m2
t y

2
t s2

β

∞∑

n=1

κn∆n, (4.6)

with

m2
h =

1

2
(g2 + g′2)c2

2βv2, (4.7)

∆1 = 12L + cλ, (4.8)

∆2 = (96g2
3 − 54y2

t s
2
β)L2 +

[
(48cyt

− 32)g2
3 + (48c′yt

+ 24cv − 3cλ − 18)y2
t s

2
β

]
L + . . . , (4.9)

∆3 = (736g4
3 − 672g2

3y
2
t s2

β + 90y4
t s

4
β)L3 +

[
(160 + 192cg3

+ 384cyt
)g4

3

+(168 − 12cλ − 324cyt
+ 384c′yt

+ 192cv)g
2
3y

2
t s2

β

+(6633/10− 324bh − 72bW − 36bZ − 99cλ/4 − 324c′yt
− 108cv

)
y4

t s4
β

]
L2 + . . . , (4.10)

∆4 = (5520g6
3 − 6492g4

3y
2
t s2

β + 2178g2
3y

4
t s4

β + 783y6
t s

6
β/2)L4 + . . . , (4.11)

where dependences on g and g′ have been dropped in the loop corrections, except where they enter through the
kinematic quantities

bh = fB(m2
h, m2

h, m2
t ), (4.12)

bW = fB(m2
h, m2

W , m2
t ), (4.13)

bZ = fB(m2
h, m2

Z , m2
t ). (4.14)

(For later comparison purposes, the leading-logarithm four loop contribution is also included.) It is important to
note that the validity of the result just given requires that the expansion is made in terms of running couplings and
masses, always evaluated at the renormalization scale Q. Indeed, this requirement even applies to the terms that
are not written here explicitly because they are suppressed by electroweak gauge couplings. [For example, there are
terms at one-loop order proportional to electroweak couplings multiplied by fB(m2

h, m2
Z , m2

t ). One could re-express
those contributions in terms of, for example, fB(M2

h , M2
Z , M2

t ) involving the physical masses Mh, MZ and Mt, but
that would require changing the κ3L2 coefficient appearing in the expansion above.]

It remains to find the matching coefficients appearing in the above expressions. First, cλ can be evaluated by
comparing the well-known one-loop Higgs pole mass calculated directly in the MSSM to eqs. (4.6)-(4.8), giving:

cλ = 6
[
ln(m2

t̃1
) + ln(m2

t̃2
) + 2|Xt|2 ln(m2

t̃2
/m2

t̃1
)/(m2

t̃2
− m2

t̃1
)

+|Xt|4
{
2 − [(m2

t̃2
+ m2

t̃1
)/(m2

t̃2
− m2

t̃1
)] ln(m2

t̃2
/m2

t̃1
)
}
/(m2

t̃2
− m2

t̃1
)2

]
. (4.15)

The coefficients cyt
and c′yt

+ cv are obtained by equating the one-loop expressions for the top-quark pole mass as
computed in the full MSSM and in the effective Standard Model theory, with the result:

cyt
=

4

3

[
1 + 2f1(m

2
g̃, m

2
t̃1

) + 2f1(m
2
g̃, m

2
t̃2

) + 2Re[Xt]mg̃{f2(m
2
g̃, m

2
t̃2

) − f2(m
2
g̃, m

2
t̃1

)}/(m2
t̃2
− m2

t̃1
)
]
, (4.16)

c′yt
+ cv =

[3

4
c2
β(lnm2

H − 1/2) + f1(|µ|2, m2
t̃1

) + f1(|µ|2, m2
t̃2

) + f1(|µ|2, m2
b̃L

)
]
/s2

β, (4.17)

where

f1(x, y) =

{ [
2x2lnx + 2(y − 2x)ylny + (x − y)(y − 3x)

]
/8(x − y)2 (x 6= y)

(lnx)/4 (x = y),
(4.18)
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f2(x, y) =

{
1 + y ln(y/x)/(x − y) (x 6= y)

0 (x = y).
(4.19)

By comparing the one-loop gluon self-energy functions computed in both the MSSM and the SM effective theory, and
relying on the equality of physical cross-sections computed in the two theories, one obtains:

cg3
= ln(m2

g̃) −
1

2
+

1

12

12∑

i=1

ln(m2
q̃i

) (4.20)

Finally, by comparing the relevant two-loop part of M2
h in eqs. (4.6)-(4.9) above to the known result as calculated

directly in the MSSM [31, 32, 41, 42], I find:

cv = −|st̃ct̃|2(m2
t̃2
− m2

t̃1
)2/(m2

t̃1
m2

t̃2
) + |Xt|2

[
−3(1 − 4|st̃ct̃|2)m2

t̃1
m2

t̃2
ln(m2

t̃2
/m2

t̃1
)/2(m2

t̃2
− m2

t̃1
)

+3(m2
t̃1

+ m2
t̃2

)/4 + |st̃ct̃|2(m4
t̃1

/m2
t̃2

+ m4
t̃2

/m2
t̃1
− 7m2

t̃1
− 7m2

t̃2
)/2

]
/(m2

t̃2
− m2

t̃1
)2. (4.21)

The above results constitute a partial three-loop ap-
proximation to the lightest Higgs mass in supersymme-
try. A useful application of this, as has been done earlier
in [43], is an estimate of the error made in neglecting
three-loop effects. (See Appendix A for a comparison of
that paper and others with the results of the present pa-
per.) However, one would like to go further to use these
results for an improved calculation of the physical Higgs
mass. To do so requires consistently adding the three-
loop correction to a more complete two-loop calculation
involving electroweak effects, which can be comparable
in size.

In earlier work, I have found the two-loop results for
M2

h in the MSSM, including all diagrammatic contribu-
tions to the pole mass that involve the strong and Yukawa
couplings (including those that also involve electroweak
couplings) [48], as well as all of the remaining contribu-
tions in the effective potential approach [41, 42]. Since
the results in the present paper are also given in terms of

running DR
′
parameters, the three-loop part can be con-

sistently added to my previous results. However, there is
an important subtlety involving the identification of the
tree-level Higgs mass. In refs. [41, 42, 48], the tree-level
h squared mass is given by the appropriate eigenvalue of
the (H0

u, H0
d) squared mass matrix, evaluated with the

VEVs at the minimum of the two-loop effective poten-
tial. In the approximation used here, this corresponds
to:

m2
h,tree = m2

h − 1

2v2

[
vu

∂

∂vu
+ vd

∂

∂vd

]
∆Veff , (4.22)

where m2
h was defined by eq. (4.7), and ∆Veff is the

radiative part of the effective potential, and the decou-
pling approximation for the Higgs scalar bosons (m2

h ≪
m2

H0 , m2
H± , m2

A0) has been used. The two versions of the
tree-level h squared mass, m2

h,tree and m2
h, therefore dif-

fer by tadpole loop contributions that involve the top
Yukawa coupling and g3.

To avoid a mismatch between the two-loop part of the
contribution found in the present paper and the full two-
loop contribution found in refs. [41, 42, 48], one can take
the results of those papers and rewrite m2

h,tree in the tree-

level and one-loop part in terms of m2
h as in eq. (4.22),

and then expand and incorporate the loop tadpole parts
as residuals into the one-loop and two-loop parts. In
the two-loop part, one can consistently simply replace
m2

h,tree by m2
h. This is exactly what was done above in

the derivation of eq. (4.21), albeit in the approximation
of large g3, yt. (There are no technical obstacles to this
procedure in general, since the derivatives of the one-
loop self-energy functions with respect to the external
momentum invariant and the internal masses are well-
known, and simple.) The resulting expression, truncated
at two-loop order, will then allow the three-loop contri-
bution of eq. (4.10) to be added consistently.

V. OUTLOOK

In this paper, I have evaluated the leading and next-
to-leading logarithm contributions to the lightest Higgs
mass in the MSSM at three-loop order, in the approxi-
mation of large QCD and top-quark Yukawa couplings.
As expected, these contributions are small, but still sig-
nificant compared to estimates of the experimental er-
ror for Mh at the LHC or a future linear collider. To
show the size of the effects, I have plotted the three-loop
leading-log (L3) contributions in the left panel of figure
1, in the special limit of a common superpartner mass
MSUSY, and choosing Mh = 120 GeV and tan(β) ≫ 1,
and using Q = MSUSY as the renormalization scale. [See
eq. (A.22).] The figure shows the separate contributions
proportional to α2

S , αS , and independent of αS , as well
as the total. There is a partial cancellation of the α2

S and
αS parts, which is a fortuitous feature of the perturbative
expansion scheme chosen here. This illustrates the more
general fact that the numerical magnitude of the three-
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FIG. 1: Leading-logarithm contributions to Mh from 3 loops (left panel) and 4 loops (right panel), as a function of the common
superpartner mass MSUSY. These results are due to the L3 part of eq. (4.10) and the L4 part of eq. (4.11), respectively, with
separate contributions from the various powers of the MSSM QCD coupling and the total shown. The Higgs pole mass is taken

to be Mh = 120 GeV and tan β ≫ 1 and α
(5),MS
S (MZ) = 0.118 (in the five-quark effective Standard Model QCD theory) and

top-quark pole mass Mt = 172 GeV.

loop correction depends on the way that perturbation
theory is organized. Changing the renormalization scale
or scheme, or re-expanding tree-level masses in one-loop
and two-loop integral functions around pole masses, can
and does move contributions between loop orders. For
example, ref. [43] found the result quoted in eq. (A.17)
of the present paper, which yields a rather larger numer-
ical magnitude for the three-loop correction, written in
terms of Standard Model effective couplings evaluated at
Q = Mt.

For comparison, the four-loop order leading logarithm
(L4) contributions are shown in the right panel of figure
1, using the same scale. As expected, these are quite
small, and there is again a fortuitous partial cancellation
between the leading and next-to-leading orders in αS .

The next-to-leading logarithm (L2) contributions at
three-loop order can be seen to depend on the top-squark
mixing and other details, and are not depicted numeri-
cally here, although they can be significant. I expect
that in application to real-world data, one will want to
re-express the perturbative expansion by expanding tree-
level masses in one-loop and two-loop kinematic integrals
around the pole masses, as this will likely further improve
the convergence of perturbation theory (see ref. [59] for
an analogous discussion for the gluino-squark system in
supersymmetric QCD). This will add more terms to the
next-to-leading parts of the three-loop contribution.

If supersymmetry is discovered and thoroughly ex-
plored at the LHC and a future linear collider, the mass
of the lightest Higgs boson will present an important pre-
cision test of our understanding of the theory. The lead-
ing three-loop corrections will be important for this test.
It should be emphasized that, at this writing, some two-
loop contributions remain uncalculated, namely those in-
volving purely electroweak couplings, which may turn out

to be similarly important. These contributions cannot be
captured adequately by the effective potential approxi-
mation, since some of the relevant self-energy diagrams
contain a routing by which the external momentum does
not go through any propagator with mass larger than
MZ or Mh. Therefore, it will probably be necessary to
evaluate those two-loop self-energy diagrams on-shell in
order to reduce theoretical errors to an acceptable level.

Appendix: Comparison with other work

It is useful to check the correspondence of the preced-
ing formulas with earlier special case results. For conve-
nience, I focus on the two-loop results given in refs. [32]
and [36], and the three-loop leading-log results of [43].

First, consider the approximations of refs. [32]:

|st̃ct̃| = 1/2; (A.1)

m2
t̃1,2

= M2
S ∓ mt|Xt|; (A.2)

m2
t , mt|Xt| ≪ M2

S ; (A.3)

mg̃ = mb̃L
= mH = |µ| = MS , (A.4)

but |Xt| not necessarily small compared to MS. Then
the results above become:

cyt
=

4

3

[
1 − Re[Xt]/MS + ln(M2

S)
]
, (A.5)

c′yt
=

3

4s2
β

[(1 + c2
β)ln(M2

S) − c2
β/2], (A.6)

cλ = 12ln(M2
S) + 12|Xt|2/M2

S − |Xt|4/M4
S, (A.7)

cv = |Xt|2/4M2
S , (A.8)

cg3
= 2ln(M2

S) − 1/2, (A.9)
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in accord with the two-loop results found in eqs.(13)-
(19) and (25) of ref. [32]. Note that the two-loop non-
logarithmic parts in eqs. (16) and (17) of ref. [32] are
not shown explicitly in the present paper; instead, the
complete contributions up to two-loop order in [41, 42,
48] can be included by the procedure described at the
end of section IV.

Next, consider the approximations of ref. [36], which
involve a light right-handed top squark:

m2
t̃ =

(
M2

L + m2
t mtX

∗
t

mtXt M2
R + m2

t

)
; (A.10)

m2
t , mt|Xt| ≪ M2

R ≪ M2
L; (A.11)

mg̃ = mb̃L
= mH = |µ| = ML, (A.12)

but |Xt| not necessarily small compared to ML. Then
the results above become

cyt
=

1

3

[
1 − 8Re[Xt]/ML + 4ln(M2

L)
]
, (A.13)

c′yt
=

3

8

(
1 − 2

s2
β

)
[1 − 2ln(M2

L)] − 3|Xt|2
4M2

L

, (A.14)

cλ = 6ln(M2
L) + 6ln(M2

R) +
12|Xt|2

M2
L

ln(M2
L/M2

R)

+
6|Xt|4
M4

L

[
2 − ln(M2

L/M2
R)

]
, (A.15)

cv = 3|Xt|2/4M2
L, (A.16)

in agreement with the two-loop results of Appendix A
and eqs. (B.8) and (C.12) and (C.13) in ref. [36]. Note
that ref. [36] also explicitly identifies two-loop contribu-
tions enhanced by large logarithms ln(M2

L/M2
R), which

are not obtained in the approach used here except when
they are also enhanced by a ln(M2

L/m2
t ). This is be-

cause ref. [36] used a multi-stage effective field theory
method, first decoupling left-handed top squarks and
then right-handed top squarks. Also, the approach of
ref. [36] isolates the non-logarithmic two-loop effective
potential contributions within the given approximation,
which are not shown explicitly here. Again, in the ap-
proach of the present paper, the complete two-loop order
results of refs. [41, 42, 48] can be included and consis-
tently supplemented by the three-loop result as described
at the end of section IV.

Now, consider the three-loop leading log result given
in eq. (11) of [43], which assumes a single sparticle mass
threshold at MS and tanβ ≫ 1, and is given in terms of
running MS couplings evaluated at the top mass scale.
In the notation of section III of the present paper, that
result is:

M2
h = m̂2

Z + ŷ4
t v̂2

[
12κLt + κ2L2

t (−96ĝ2
3 + 18ŷ2

t )

+κ3L3
t (736ĝ4

3 − 240ĝ2
3ŷ

2
t − 99ŷ4

t )
]
, (A.17)

where

Lt = ln(M2
S/m2

t ). (A.18)
Now, in the leading-logarithm approximation, the trans-
lation of SM parameters evaluated at the top mass
scale to the MSSM parameters evaluated at MS depends
only the Standard Model one-loop renormalization group

equations, and is independent of the MS to DR
′
conver-

sion and threshold corrections. One can write:

ĝ3 = g3

[
1 + κLt(7g2

3/2) + ...
]
, (A.19)

ŷt = yt

[
1 + κLt(4g2

3 − 9y2
t /4)

+κ2L2
t (22g4

3 − 18g2
3y

2
t + 243y4

t /32) + ...
]
,(A.20)

v̂ = v
[
1 + κLt(3y2

t /2)

+κ2L2
t (6g2

3y
2
t − 9y4

t /4) + ...
]
, (A.21)

where the parameters on the left sides are evaluated at
Q = mt, and those on the right sides at Q = MS . Plug-
ging these into eq. (A.17) immediately yields the special
form of eqs. (4.6)-(4.10) with only the leading logarithms
and sβ = 1:

M2
h = m2

Z + y4
t v2

[
12κLt + κ2L2

t (96g2
3 − 54y2

t )

+κ3L3
t (736g4

3 − 672g2
3y

2
t + 90y4

t )
]
. (A.22)

This is more useful as a rough indicator of the sizes of
theoretical errors due to three-loop effects than as an
actual precise evaluation of Mh.
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